661 research outputs found

    The 2XMMi/SDSS Galaxy Cluster Survey. III. Clusters associated with spectroscopically targeted luminous red galaxies in SDSS-DR10

    Full text link
    We present a sample of 383 X-ray selected galaxy groups and clusters with spectroscopic redshift measurements (up to z ~ 0.79) from the 2XMMi/SDSS Galaxy Cluster Survey. The X-ray cluster candidates were selected as serendipitously detected sources from the 2XMMi-DR3 catalogue that were located in the footprint of the Sloan Digital Sky Survey (SDSS-DR7). The cluster galaxies with available spectroscopic redshifts were selected from the SDSS-DR10. We developed an algorithm for identifying the cluster candidates that are associated with spectroscopically targeted luminous red galaxies and for constraining the cluster spectroscopic redshift. A cross-correlation of the constructed cluster sample with published optically selected cluster catalogues yielded 264 systems with available redshifts. The present redshift measurements are consistent with the published values. The current cluster sample extends the optically confirmed cluster sample from our cluster survey by 67 objects. Moreover, it provides spectroscopic confirmation for 78 clusters among our published cluster sample, which previously had only photometric redshifts. Of the new cluster sample that comprises 67 systems, 55 objects are newly X-ray discovered clusters and 52 systems are sources newly discovered as galaxy clusters in optical and X-ray wavelengths. Based on the measured redshifts and the fluxes given in the 2XMMi-DR3 catalogue, we estimated the X-ray luminosities and masses of the cluster sample.Comment: A&A in press, 12 pages, 15 figures, 1 table, http://www.aanda.org/index.php?option=com_article&access=doi&doi=10.1051/0004-6361/20132297

    The 2XMMi/SDSS Galaxy Cluster Survey. II. The optically confirmed cluster sample and the L_X-T relation

    Full text link
    We compile a sample of X-ray-selected galaxy groups and clusters from the XMM-Newton serendipitous source catalogue (2XMMi-DR3) with optical confirmation and redshift measurement from the Sloan Digital Sky Survey (SDSS). The X-ray cluster candidates were selected from the 2XMMi-DR3 catalogue in the footprint of the SDSS-DR7. We developed a finding algorithm to search for overdensities of galaxies at the positions of the X-ray cluster candidates in the photometric redshift space and to measure the redshifts of the clusters from the SDSS data. The detection algorithm provides the photometric redshift of 530 galaxy clusters. Of these, 310 clusters have a spectroscopic redshift for at least one member galaxy. About 75 percent of the optically confirmed cluster sample are newly discovered X-ray clusters. Moreover, 301 systems are known as optically selected clusters in the literature while the remainder are new discoveries in X-ray and optical bands. The optically confirmed cluster sample spans a wide redshift range 0.03-0.70 (median z=0.32). In this paper, we present the catalogue of X-ray-selected galaxy groups and clusters from the 2XMMi/SDSS galaxy cluster survey. The catalogue has two subsamples: (i) a cluster sample comprising 345 objects with their X-ray spectroscopic temperature and flux from the spectral fitting, and (ii) a cluster sample consisting of 185 systems with their X-ray flux from the 2XMMi-DR3 catalogue, because their X-ray data are insufficient for spectral fitting. The updated L_X-T relation of the current sample with X-ray spectroscopic parameters is presented. We see no evidence for evolution in the slope and intrinsic scatter of the L_X-T relation with redshift when excluding the low-luminosity groups.Comment: A&A in press, 18 pages, 25 figures, 3 tables (revised version after language editing

    XMM-Newton and optical observations of the eclipsing polar CSS081231:071126+440405

    Full text link
    Aims: We aim to study the temporal and spectral behaviour of the eclipsing polar CSS081231:071126+440405 from the infrared to the X-ray regime. Methods: We obtained phase-resolved XMM-Newton X-ray observations on two occasions in 2012 and 2013 in different states of accretion. In 2013 the XMM-Newton X-ray and UV data were complemented by optical photometric and spectroscopic observations. Results: CSS081231 displays two-pole accretion in the high state. The magnetic fields of the two poles are 36 and 69 MG, indicating a non-dipolar field geometry. The X-ray spectrum of the main accreting pole with the lower field comprises a hot thermal component from the cooling accretion plasma, kTplaskT_{plas} of a few tens of keV, and a much less luminous blackbody-like component from the accretion area with kTbbkT_{\rm bb} \sim 50-100\,eV. The high-field pole which was located opposite to the mass-donating star accretes at a low rate and has a plasma temperature of about 4\,keV. At both occasions the X-ray eclipse midpoint precedes the optical eclipse midpoint by 3.2 seconds. The center of the X-ray bright phase shows accretion-rate dependent longitudinal motion of ~20 degrees. Conclusions: CSS081231 is a bright polar that escaped detection in the RASS survey because it was in a low accretion state. Even in the high state it lacks the prominent soft component previously thought ubiquitous in polars. Such an excess may still be present in the unobserved extreme ultraviolet. All polars discovered in the XMM-Newton era lack the prominent soft component. The intrinsic spectral energy distribution of polars still awaits characterisation by future X-ray surveys such as eROSITA. The trajectory taken by material to reach the second pole is still uncertain.Comment: 12 pages, 14 figure

    A long-term optical and X-ray ephemeris of the polar EK Ursae Majoris

    Full text link
    We searched for long-term period changes in the polar EK UMa using new optical data and archival X-ray/EUV data. An optical ephemeris was derived from data taken remotely with the MONET/N telescope and compared with the X-ray ephemeris based on Einstein, Rosat, and EUVE data. A three-parameter fit to the combined data sets yields the epoch, the period, and the phase offset between the optical minima and the X-ray absorption dips. An added quadratic term is insignificant and sets a limit to the period change. The derived linear ephemeris is valid over 30 years and the common optical and X-ray period is P=0.0795440225(24) days. There is no evidence of long-term O-C variations or a period change over the past 17 years Delta P = -0.14+-0.50 ms. We suggest that the observed period is the orbital period and that the system is tightly synchronized. The limit on Delta P and the phase constancy of the bright part of the light curve indicate that O-C variations of the type seen in the polars DP Leo and HU Aqr or the pre-CV NN Ser do not seem to occur in EK UMa. The X-ray dips lag the optical minima by 9.5+-0.7 deg in azimuth, providing some insight into the accretion geometry.Comment: 4 pages, 2 Postscript figures, accepted for publication in Astronomy & Astrophysic

    The serendipituous discovery of a short-period eclipsing polar in 2XMMp

    Full text link
    We report the serendipituous discovery of the new eclipsing polar 2XMMp J131223.4+173659. Its striking X-ray light curve attracted immediate interest when we were visually inspecting the source products of the 2XMMp catalogue. This light curve revealed its likely nature as a magnetic cataclysmic variable of AM Herculis (or polar) type with an orbital period of ~92 min, which was confirmed by follow-up optical spectroscopy and photometry. 2XMMp J131223.4+173659 probably has a one-pole accretion geometry. It joins the group of now nine objects that show no evidence of a soft component in their X-ray spectra despite being in a high accretion state, thus escaping ROSAT/EUVE detection. We discuss the likely accretion scenario, the system parameters, and the spectral energy distribution.Comment: Accepted for publication in A&

    Probing the accretion processes in soft X-ray selected polars

    Get PDF
    High-energy data of accreting white dwarfs give access to the regime of the primary accretion-induced energy release and the different proposed accretion scenarios. We perform XMM-Newton observations of polars selected due to their ROSAT hardness ratios close to -1.0 and model the emission processes in accretion column and accretion region. Our models consider the multi-temperature structure of the emission regions and are mainly determined by mass-flow density, magnetic field strength, and white-dwarf mass. To describe the full spectral energy distribution from infrared to X-rays in a physically consistent way, we include the stellar contributions and establish composite models, which will also be of relevance for future X-ray missions. We confirm the X-ray soft nature of three polars.Comment: Accepted for publication in Acta Polytechnica, Proceedings of "The Golden Age of Cataclysmic Variables and Related Objects II
    corecore